Journal Papers:
- S. Foucart, E. Tadmor, M. Zhong. On the Sparsity of LASSO Minimizers in Sparse Data Recovery (arXiv Link), accepted by Constructive Approximation, 2022.
- M. Zhong, J. Miller, M. Maggioni. Data-driven Discovery of Emergent Behaviors in Collective Dynamics (Paper Link, arXiv Link), Physica D: nonlinear phenomenon, 411, 132542, October 2020.
- F. Lu, M. Zhong, S. Tang, M. Maggioni. Nonparametric inference of interaction laws in systems of agents from trajectory data (Paper Link, arXiv Link), PNAS, 116 (3), 14424 – 14433, June 2019.
- B. Ganis, I. Yotov, M. Zhong. A Stochastic Mortar Mixed Finite Element Method for Flow in Porous Media with Multiple Rock Types (Paper Link), SIAM J. Sci. Comp., 33 (3), 1439 – 1474, June 2011.
Conference Proceedings:
- J. Park, C. Saltijeral, M. Zhong. Grassmanian Packings: Trust Region Stochastic Tuning for Matrix Inconherence (arXiv Link), accepted to the 58th Allerton Conference, 2022.
- J. Feng, M. Maggioni, P. Martin, M. Zhong. Learning Interaction Variables and Kernels from Observations of Agent-Based Systems (arXiv Link), accepted to MTNS 2022, 2022.
- M. Maggioni, J. Miller, H. Qiu, M. Zhong. Learning interaction kernels for agent systems on Riemannian manifolds (paper link), PMLR 139: 7290 – 7300, 2021.
Preprints:
- E. J. R. Coutinho, M. Dall’Aqua, L. McClenny, M. Zhong, U. Braga-Neto, E. Gildin. Stabilized Hyperbolic PDE Solver by Adding Adaptive Localized Artificial Viscosity to Physics-Informed Neural Networks (arXiv Link), submitted, 2022.
- M. Zhong, J. Miller, M. Maggioni. Machine Learning for Discovering Effective Interaction Kernels between Celestial Bodies from Ephemerides, submitted (arXiv Link), 2021.
- J. Miller, S. Tang, M. Zhong and M. Maggioni. Learning theory for inferring interaction kernels in second-order interacting agent systems (arXiv Link), submitted 2020.
- M. Zhong. Time Relaxation with Iterative Modified Lavrentiev Regularization (arXiv Link), September 2018.
- N. Mays, M. Zhong. Iterative Refinement of a Modified Lavrentiev Regularization Method for De-convolution of the Discrete Helmholtz type Differential Filter (arXiv Link), January 2018.
Thesis:
- M. Zhong. Hierarchical Reconstruction Method for Solving Ill-posed Linear Inverse Problems (Thesis Link), Ph.D. Thesis, May 2016.